1.	1 2 3 4 5 6 7 8	ref to operon; normally repressor substance bound to operator; prevents RNA polymerase binding (at promoter) / preve transcription; lactose binds to repressor; changes shape of protein molecule; unable to bind (to operator); RNA polymerase binds (at promoter) / transcription occ switched on; AVP; e.g. production of lactose permease / production of galactosidase;	ents curs / genes of beta- max 5	[5]
2.	a ch unp extr	hange in the genetic material; predictable / AW; tra detail; e.g. addition / substitution / deletion / frame s part of chromosome / may code for differ may code for no protein	shift / small rent protein /	[2]
3.	1 m mut som so u una so i effe effe poo AV	 mark max for general effect of mutations: nation may give different, amino acid / primary structure; A ref stop codon me mutations alter, molecular shape / tertiary structure / b a for explaining data in Table: unable to, accept / transport, HCO₃⁻; able to bind ATP; increase in acidity / decrease in pH; fect on mucus; fect on enzyme(s) /ref pH optimum of enzyme(s); or digestion of, protein / lipid / starch; /P; e.g. some mutations, give some transport / have less > 33% (of norm) allows normal digestive funct [A very low] does not. 	inding; s effect. ion / < 6% max 3	[3]
4.	allo	ow max 5 for following:		

allow max 5 for following: <u>transcription;</u>
DNA unzips / H bonds break; exposing required, gene / sequence of bases; RNA nucleotides align with DNA; U with A, A with T, C with G, and G with C; RNA polymerase; mRNA formed (using DNA strand as template); leaves nucleus through pore;

allow max 5 for following:

translation; mRNA attaches to ribosome; tRNA brings amino acid (to, ribosome / mRNA); each tRNA attached to specific amino acid; tRNA binds to mRNA using complementary, base triplet / anticodon; peptide bond formed between amino acids; DNA / mRNA, (nucleotide / base) sequence determines sequence of amino acids; AVP; e.g. 2, base triplets / codons, in ribosome

AVP; e.g. ref. to : start / stop, codons polysomes large and small subunit in ribosome Mg²⁺

5. *1 mark per correct row*

6.

Look for both ticks and crosses.

If a table consists of ticks ONLY or crosses ONLY, then assume that the blank spaces are the other symbol.

If a table consists of ticks, crosses and blanks then the blanks represent no attempt at the answer.

Nucleotides line up along an exposed DNA strand.	\checkmark	√ ;
The whole of the double helix 'unzips'.	\checkmark	X ;
Uracil pairs with adenine.	×	√ ;
A tRNA triplet pairs with an exposed codon.	×	X ;
Both DNA polynucleotide chains act as templates.	\checkmark	√ ;
Adjacent nucleotides bond, forming a sugar-phosphate backbone.	\checkmark	√ ;
The original DNA molecule is unchanged after the process.	×	√ ;
Adenine pairs with thymine.	\checkmark	√ ;

[8]

(a)	(i)	U A C C G G A U U C A C;;	
		1 error = 1, 2 errors = 0	
		allow 1 mark for giving T throughout instead of U	
		(i.e. TA C C G G A T T C A C = 1 mark)	2

(ii) transcription / transcribed; **R** transcriptase 1

[10]

(b)	(i)	J K L M	anticodon; R anticodons transfer RNA / tRNA; ribosome / rRNA; codon; R codons	4	
	(ii)	1	DNA triplet / codon / M / mRNA triplet, codes for		
		•	specific amino acid;		
		2	order of, triplets / bases, determines the order of amino acids;		
		3	tRNA / K, has, corresponding / complementary, triplet / anticodon;		
		4	(tRNA / K) attached to specific amino acid;		
		5	activation of amino acid;		
		6	2 (tRNA) binding sites on the ribosome;		
		7	codon and anticodon bind; A match		
		8	A to U and C to G;		
		9	adjacent amino acids join;		
		10	peptide bond;	4 max	
(c)	1	atta	ches to ribosome;		
	2	rem A s	noves, base / portion, of ribosome; tops ribosome assembling / changes shape of ribosome		
	3	pre	vents ribosome, attaching to / reading, mRNA;		
	4	pre	vents codons being exposed;		
	5	pre	vents, tRNA / anticodon, attaching to, mRNA / codon;		
	6	pre pep	vents / inhibits enzyme responsible for, formation of tide linkages;		
	7	AV	P; e.g. further detail of any of the above points	2 max	[13]
(a)	(i)	mR mR DN mP	NA leaves nucleus; <i>ora</i> NA, translated / used to make, protein; A, transcribed / used to make, mRNA; NA short-term / DNA (long-term) store;	2 may	
	(ji)	ciP	NA smaller / fewer nucleotides / only matches part of gape: org	2 max	
	(11)	siR	NA double-stranded; <i>ora</i>	2	

7.

(complementary) base-pairing; (b) hydrogen bonding; between purines and pyrimidines; A with U; **R** A with T C with G: ref to 2 or 3 bonds (correct context); 3 max [7] 8. (i) (CCR5 / macrophages) (siRNAs continue to work) in long-lived cells; only one treatment needed for macrophages / CCR5; (siRNAs diluted) as lymphocytes divide; ora repeat treatments needed for, lymphocytes / CD4; 2 (ii) (CCR5)because no essential function in body / absence not a problem; 1 [3] 9. (i) steep increase, for the first 1 - 2 hours / till 2.2 - 3.8 (a.u) ; A linear, (a) steady became constant at, 3 hours / 4.3 (a.u); if no figs in description, e.g. 'rose then constant' award 1 mark max 2 (increased as) enzyme working / rate of reaction high / reaction (ii) proceeding; (increased as) substrate converted into, drug / product ; (levelled off / became constant, after the) enzyme, became inactive / was denatured; (levelled off / became constant) because product inhibits, reaction / enzyme; **R** references to enzyme or substrate being used up **R** T °C limiting 2 (b) pH; degree of mixing; enzyme concentration; AVP ; e.g. ref to concentration of inhibitors 1 max

PMT

(c)		max of 2 marks for predicting or explaining		
	P1 P2 P3 P4	concentration of drug higher / AW ; rate of reaction slower / AW ; may not level off (in time scale shown on graph) ; time taken to reach the maximum yield (approximately) doubles ; (c.f. 15 °C)		
	E1 E2 E3 E4 E5	not denatured ; adapted to 5 °C / optimum / body / usual, temperature ; ref to Q ₁₀ of about 2 ; ref to lower kinetic energy / AW ; ref to E-S, collisions / complexes ;		
		AVP ; e.g. ref to active site	3 max	
(d)	(i)	(shaded amino acids) form the active site ; substrate may not attach to the active site ; enzyme-substrate complex may not be formed / AW ;	1 max	
	(ii)	44 and 66 not part of active site ; hold, active site / 3° structure / 3D structure, in shape ; A stop dena hydrogen bonds weak ; easily broken by, vibration / heat ; A pH disulphide bridge strong ; not broken by heat ;	turing 2 max	
(e)	nucl char mak trans diffe trans diffe	eotide / base/ DNA, sequence codes for, protein / amino acid, sequen nges DNA ; A change triplet es different mRNA ; A change codon scription ; erent tRNAs line up ; A change anticodon slation ; erent (amino acid sequence in), enzyme / protein / polypeptide ;	ce ; 2 max	[13]
(a)	estir herit whe	nate of role of genotype in phenotypic variation / AW ; tability = V_G / V_P ; n heritability high much of variation is, genetic / not environmental		

/ ora ; high heritability will result in successful selective breeding / ora ; 2 max

10.

(b)	single large little e domin not po not ac discon qualit	e / major / Mendelian, gene ; effect ; environmental effect ; nant allele T expressed in homo- and heterozygote ; olygenic ; lditive ; ntinuous variation / not continuous variation ; ative / not quantitative ;	2 max
(c)	(i)	triplet of bases that does not code for an amino acid ; ATT / ATC / ACT ; code to mark end of gene ; code to stop transcription / ref to disengagement RNA polymerase ;	2 max
	(ii)	transcription halted early / AW ; protein will, be smaller / have fewer amino acids ; tertiary structure / 3D shape different ; binding / affinity, different ; protein inactive ;	3 max
		ref to <i>lac</i> operon ;	
	(iii)	ref to, promoter / operator / 'on' switch ; allele T is regulator ; (protein) binds to DNA ; (protein) binds to repressor and prevents it binding to DNA ; allows RNA polymerase to bind ; AVP ; e.g. enzyme affecting transcription	2 max
(d)	(i)	tt + T / AW, increases number of tillers per plant ; and number of branches per tiller ; ref to comparative figures ;	2 max
	(ii)	inserted into genome randomly / cannot choose where it is inserted ; may be within a frequently expressed gene ; may be after an 'on' switch ; lacks normal controls ; AVP ; e.g. no other alleles affecting it different promoter	2 max

[15]

[4]

11.	plant signal used by earworms;	
	J switches on gene coding for E ;	
	can then break down insecticide;	
	effect on transcription ; $(\times 5.5)$	
	reduces mortality;	
	even in absence of insecticide;	
	in absence of J , mortality, high / c. 87%;	
	ref to comparative figures;	
	e.g. 87 to 48% / almost halved, in presence of insecticide	
	16 to 7% / more than halved, in absence of insecticide	
	slight expression of E in absence of J caused by insecticide ;	4 max

12.	(a)	plasn	uid DNA	protein	
		nucle 4 diff phosp conta doub circu	otides / sugar + phosphate + base ; Ferent subunits ; phodiester bonds ; A phosphoester ins P ; le-stranded / double helix ; lar ;	amino acids ; 20 different subunits ; peptide bonds / polypeptide ; contains S / disulphide bonds ; may have 4° structure ; ref to, 2° / 3°, structure / AW ;	
		AVP	; e.g. role of H bonds		3 max
	(b)	(i)	stimulates, immune response / product	ion of antibodies / T or B cells ;	1
		(ii)	stimulate, cell-mediated immunity / T antigen, remains in body longer / conti antigens in blood only stimulate, humo antigens (in blood) lost in urine / broke ref to MHC ;	cells ; nuously produced ; oral immune system / B cells ; en down in liver ;	1 max
	(c)	(i)	binds RNA polymerase ; allows, transcription / production of m switches gene on / allows gene express	RNA ; sion ;	2 max
		(ii)	(protect against) more than one, strain stronger immune response ; less likely mutant form will escape imm AVP ; cheaper / reduces number of var	/ disease / pathogen / AW ; mune response / AW ; ccinations	2 max
		(iii)	Golgi modifies <u>protein</u> / <u>polypeptide</u> / forms glycoproteins / add sugars <i>or</i> cat Golgi forms vesicles ; incorporated into cell membrane ; R ex AVP ;	AW ; rbohydrate ; xocytosis	2 max

- (d) *cells that take up DNA vaccine might*
 - **1** function less well ;
 - 2 be killed by immune system / trigger auto-immune response ;
 - 3 have genes disrupted / mutation ;
 - 4 new gene might be inherited / AW;
 - 5 plasmid could enter bacteria ;
 - 6 superbug / create new disease / AW ;
 - 7 effects unknown / new technology / no human trials ;
 - 8 AVP ; ref ethics, ref irreversible

3 max

4

[14]

13. (a)
--------------	----

(i) **AaBB** white; **aaBB** black; **Aabb** white; **aabb** brown;

- (ii) (dominant) epistasis; 1
 (iii) codes for inhibitor; protein; blocks transcription (of allele coding for pigment); ref to, regulator / promoter; blocks enzyme (producing pigment); AVP; e.g. detail max 3
- (b) (i) $AaBb \times AaBb / AaBb \times Aabb;$

	 both must have A because they are white; * both must, have a / not be homozygous AA, because some kittens coloured; * both must have b to give brown kittens; 		
	• <i>'must be heterozygous at both loci' = 1 only</i>		
	at least one / one or both, must have B to give black kittens; credit ref to Punnett square showing genotypes; credit ref to Punnett square showing phenotypes;	max 5	
(ii)	AaBb × AaBb 12 white : 3 black : 1 brown;;		
	AaBb × Aabb 6 white : 1 black : 1 brown;;	max 2	[15]

(i)	RNA(i) combines with mRNA; e.g. of base pairing (but not T) A-U / G-C; stops translation; ref to stops mRNA combining with ribosomes; stops protein synthesis;	max 3	
(ii)	chemicals / enzymes in, mouth / toothpaste / bacteria; denature / degrade, RNA; RNA not normally taken up by bacterial cells; short life of RNA; RNA not replicated in bacteria when bacteria reproduce; toothpaste in mouth only for short time; AVP; AVP; e.g. washed away by saliva	max 2	[5]
1 2 3 4 5 6 7 8 9	ref to <u>operon</u> ; normally <u>repressor</u> substance bound to <u>operator</u> ; prevents RNA polymerase binding (at promoter) / prevents transcription; lactose binds to <u>repressor</u> ; changes shape of protein molecule; unable to bind (to operator); RNA polymerase binds (at promoter) / transcription occurs / genes switched on; production of <u>lactose permease</u> ; production of <u>beta – galactosidase</u> ;		[5]
1 2 3 4 5	proteins needed for repair / AW; more transcription of, DNA / genes; more translation; protein synthesis; named protein; e.g. actin / myosin / troponin / tropomyosin		
	ignore all refs to muscle contraction		
6 7 8 9	more <u>aerobic</u> respiration; so more, energy released / ATP produced; (energy required for) condensation / anabolic, reactions; (energy required for) formation of peptide bonds;		
10	(energy required for) formation of extra mRNA;	max 5	[5]
	(i) (ii) (ii) 12345 6789 12345 6789 10	 (i) RNA(i) combines with mRNA; e.g. of base pairing (but not T) A-U/G-C; stops translation; ref to stops mRNA combining with ribosomes; stops protein synthesis; (ii) chemicals / enzymes in, mouth / toothpaste / bacteria; denature / degrade, RNA; RNA not normally taken up by bacterial cells; short life of RNA; RNA not replicated in bacteria when bacteria reproduce; toothpaste in mouth only for short time; AVP; AVP; e.g. washed away by saliva 1 ref to <u>operon</u>; 2 normally <u>repressor</u> substance bound to <u>operator</u>; 3 prevents RNA polymerase binding (at promoter) / prevents transcription; 4 lactose binds to <u>repressor</u>; 5 changes shape of protein molecule; 6 unable to bind (to operator); 7 RNA polymerase binds (at promoter) / transcription occurs / genes switched on; 8 production of lactose permease; 9 production of lactose permease; 9 production of <u>beta - galactosidase</u>; 1 proteins needed for repair / AW; 2 more transcription of, DNA / genes; 3 more translation; 4 protein synthesis; 5 named protein; e.g. actin / myosin / troponin / tropomyosin <i>ignore all refs to muscle contraction</i> 6 more <u>aerobic</u> respiration; 7 so more, energy released / ATP produced; 8 (energy required for) formation of extra mRNA; 	 (i) RNA(i) combines with mRNA; e.g. of base pairing (but not T) A-U/G-C; stops translation; ref to stops mRNA combining with ribosomes; stops protein synthesis; max 3 (ii) chemicals / enzymes in, mouth / toothpaste / bacteria; denature / degrade, RNA; RNA not normally taken up by bacterial cells; short life of RNA; RNA not replicated in bacteria when bacteria reproduce; toothpaste in mouth only for short time; AVP; e.g. washed away by saliva max 2 1 ref to <u>operon</u>; normally repressor substance bound to <u>operator</u>; operator; changes shape of protein molecule; duable to bind to <u>operator</u>; changes shape of protein molecule; duable to bind (to operator); 7 RNA polymerase binds (at promoter) / prevents transcription; lactose binds to repressor; changes shape of protein molecule; duable to bind (to operator); 7 RNA polymerase binds (at promoter) / transcription occurs / genes switched on; 8 production of lactose permease; 9 production of beta _ galactosidase; 1 proteins needed for repair / AW; more transcription of, DNA / genes; more translation; protein synthesis; 5 named protein; e.g. actin / myosin / troponin / tropomyosin ignore all refs to muscle contraction 6 more aerobic respiration; 7 so more, energy released / ATP produced; 8 (energy required for) formation of petide bonds; 10 (energy required for) formation of petide bonds; 10 (energy required for) formation of petide bonds;

17.	(a)	provides sites for binding; ref to, spindle fibres / microtubules; ref to genes being spaced out along chromosome; places to break and rejoin (during meiotic division); A chiasmata formation 'junk' implies no, function / purpose; <i>ora</i> function may not yet have been discovered; AVP; e.g. raw material for, evolution / natural selection, required for, cell division / mitosis / meiosis	max 2	
	(b)	straight line sloping up from left to right; (does not need to start at origin)	1	
	(c)	ATP / NAD / NADP / RNA / phospholipid / GP / TP / RuBP / ADP / RUP / AMP / cAMP/ phosphocreatine / AVP; R DNA	1	[4]
18.	DNA trans enzy 3 bas sequ prim coili deter foldi 3-D AVF	A codes for, protein / polypeptide; acription and translation (or described); me is <u>globular</u> (protein); ses $\equiv 1$ amino acid; ence of bases / triplets, determines, sequence of amino acids / ary structure; ng / α helix / β -pleated sheet / particular secondary structure; rmines projecting side groups; ng / bonding, for tertiary structure; structure is tertiary structure; P; e.g. ref. active site related to shape 2 or more genes produce quaternary structure	4 max	[4]